Ocean Wave Speed in the Antarctic MIZ
نویسندگان
چکیده
The propagation of ocean waves in the marginal ice zone (MIZ) is investigated with the aim of determining whether the loading and scattering of waves by ice floes is significant. Measurements made using instrumented ice floes in the MIZ north of the Ross Sea, Antarctica, during June 1998, are used to determine the frequency-wavelength relationship for propagating ocean waves in that region. This measured dispersion equation is related to the effective large-scale properties of the MIZ that occur in models for wave propagation and scattering. We present the measured wave speeds to enable estimation of the parameters in these models. Keywords–Wave speed, dispersion equation, marginal ice zone, sea ice.
منابع مشابه
An Arctic Ice/Ocean Coupled Model with Wave Interactions
– further our understanding of the hydrodynamical interactions between polar oceans and sea ice; – develop new theoretical models and numerical methods with applications to other areas of science; – model attenuation and directional wave propagation within and in the waters adjoining the marginal ice zone (MIZ), using the conservative multiple wave scattering approach in a medium with random ge...
متن کامل15: An Arctic Ice/Ocean Coupled Model with Wave Interactions
– further our understanding of the hydrodynamical interactions between polar oceans and sea ice, especially with regard to the marginal ice zone (MIZ), i.e. the typically 10–100 km wide m ́elange of ice floes that connects open sea to the interior pack ice; – model the attenuation and spreading of directional seas within and in the waters adjoining MIZs, using a conservative, multiple wave scatt...
متن کاملGranular flow in the marginal ice zone.
The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material w...
متن کاملModelling wave-induced sea ice break-up in the marginal ice zone
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensi...
متن کامل13: Wave-ice interaction in the Marginal Ice Zone: toward a wave-ocean-ice coupled modeling system
Our main objective is to improve an operational model for wind-generated surface gravity waves (WAVEWATCH III ®) such that it can accurately predict the attenuation and scattering of waves by interaction with ice in the Marginal Ice Zone (MIZ). The wave model physics developed here will later be part of an operational coupled model system, allowing feedback to ice, ocean, and atmospheric models...
متن کامل